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Epileptic Seizure Detection Based on Stockwell
Transform and Bidirectional Long
Short-Term Memory

Minxing Geng, Weidong Zhou

Abstract— Automatic seizure detection plays a signifi-
cantrole in monitoring and diagnosis of epilepsy. This paper
presents an efficient automatic seizure detection method
based on Stockwell transform (S-transform) and bidirec-
tional long short-term memory (BiLSTM) neural networks
forintracranial EEG recordings. First, S-transformis applied
to raw EEG segments, and the obtained matrix is grouped
into time-frequency blocks as the inputs fed into BiLSTM
for feature selecting and classification. Afterwards, post-
processing is adopted to improve detection performance,
which includes moving average filter, threshold judgment,
multichannel fusion, and collar technique. A total of 689 h
intracranial EEG recordings from 20 patients are used for
evaluation of the proposed system. Segment-based assess-
ment results show that our system achieves a sensitivity
of 98.09% and specificity of 98.69%. For the event-based
evaluation, a sensitivity of 96.3% and a false detection
rate of 0.24/h are yielded. The satisfactory results indicate
that this seizure detection approach possess promising
potential for clinical practice.

Index Terms— Automatic seizure detection, bidirectional
long short-term memory, Stockwell transform.

I. INTRODUCTION

PILEPSY is a common neurological disease, which is
characterized by abrupt, abnormal, and excessive electri-
cal disturbances of brain neurons. According to the estimation
of WHO, more than 50 million people worldwide suffer
from medically intractable epilepsy [1]. Electroencephalog-
raphy (EEG) has been widely applied to the diagnosis of
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brain diseases [2]-[4]. Long-term EEG recordings usually
are visually analyzed by certified neurologists to identify
abnormal seizure activities in clinical practice [3], which is
a burdensome and tedious task. Therefore, the development
of automatic seizure detection system is valuable for helping
medical staff to relieve workload and monitor epilepsy.

Automatic seizure detection has been investigated for
several decades and many encouraging results have been
achieved. One of the earliest epileptic seizure detection sys-
tems was presented by Gotman [5] in the early 1980s. In his
work, EEG signals were broken down into half waves, and
slope, rhythmicity, and sharpness were extracted as features for
classification. Later, this method was improved by Gotman [6]
and Qu [7] to learn a patient specific false alarm model. After
that, many approaches have been proposed, mainly including
time domain [8]-[11], frequency domain [12]-[16], and non-
linear dynamics theory [17]-[24]. Yuan et al. [25] utilized
pattern match regularity statistics to extract EEG features and
employed extreme learning machine to address the imbalances
between nonseizure and seizure data. Kumar et al. [26]
computed the histograms of 1-D local binary pattern for the
discriminant analysis. Acharya et al. [27] developed a 13-layer
deep convolutional neural network (CNN) for categorizing
seizure, pre-ictal and normal data. Siuly et al. [28] proposed
to using Hermite transform for feature extraction and least
square vector machine for classification. Supriya et al. [29]
built a weight visibility graph network for seizure detection by
measuring different strengths in graph theory. Ullah et al. [30]
designed a pyramidal 1D-CNN model with two augmentation
schemes for real-time seizure detection.

Due to the nonstationarity of EEG signals, many time-
frequency techniques such as Short-time Fourier transform
(STFT) and wavelet transform (WT) have been applied for
EEG analysis. Stockwell transform (S-transform) proposed by
Stockwell et al. [31] is considered as the combination of STFT
and WT, which could realize multiresolution analysis with
low computing complexity [32]. S-transform has been widely
applied in many fields, such as heart sound segmentation [33],
power quality analysis [34], and medical imaging [35]. In the
current study, S-transform is utilized for time-frequency rep-
resentation of EEG signals.

With the growth of mass data and the progress of parallel
computing, deep learning has developed rapidly in many
fields, such as computer vision [36], [37], natural language
processing [38], [39] and the diagnosis of diseases [40].
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The recurrent neural network (RNN) is a kind of deep learn-
ing framework which exploits recurrent connections between
network blocks. RNN possesses the ability to learn underlying
dynamics of the sequential input [41] and has been extensively
applied to analyze time series [42]. However, the main problem
in the training of deep RNN is the gradient vanishing caused
by overlong transmission during backpropagation. To address
this limitation, long short-term memory (LSTM) with the
inclusion of controlled gates is introduced by Hochreiter
and Schmidhuber [43]. LSTM has an advantage over other
neural networks in analyzing dynamic EEG signals, and has
been used for emotion recognition [44], sleep stage classi-
fication [45] and seizure detection [46]-[48]. In the current
work, bidirectional LSTM (BiLSTM) is applied to EEG time-
frequency matrix obtained with S-transform. Compared with
the feedforward LSTM, bidirectional LSTM (BiLSTM) could
process time series in both time directions simultaneously [49],
and has proven to have better capabilities in classification
task [50].

This work presents an effective seizure detection algorithm
which combines the S-transform and BiLSTM. S-transform
has the advantages over Fourier transform and Wavelet trans-
form in its low computational complexity. The time-frequency
matrix obtained from S-transform is automatically feature
selected and classified through BiLSTM. The public Freiburg
EEG database is employed to evaluate the performance of
our approach. To the best of our knowledge, this is the
first attempt to combine S-transform and recurrent neural
networks for seizure detection. Experimental results evidence
the effectiveness of the proposed algorithm. Moreover, the
combination of RNN with S-transform will also be beneficial
to analyzing other biomedical data.

The rest of this paper is organized as follows. Section Il
gives a brief introduction of Freiburg intracranial EEG data-
base. Section Ill is devoted to the proposed seizure detec-
tion method, which contains S-transform, BiLSTM, and
postprocessing. The experimental results are exhibited in
Section IV. Section V discusses the results and compare the
performance with other algorithms. Section VI presents a
conclusion of this paper.

[1. INTRACRANIAL EEG DATABASE

The intracranial EEG database used in this study comes
from the Epilepsy Center of the University Hospital of
Freiburg, Germany [51]. It contains invasive EEG recordings
of 21 patients suffering from medically intractable epilepsy.
The EEG was sampled by NT digital video EEG system and
16-bit A/D converter with the sampling rate of 256 Hz. Six
EEG contacts which consist of three extra-focal and three
in-focal channels were chosen by well-trained epileptologist.
In our study, only the in-focal channels are utilized to train
the model as they contain more physiological and pathological
information.

For each patient, there are about 2-5 h seizure recordings
in “Ictal” dataset and long term inter-ictal recordings in
“Interictal” dataset, respectively. The former dataset contains
seizure events which range from 12 seconds to 16 minutes
and has at least 50 minutes of pre-ictal data. The latter dataset

TABLE |
DETAILS OF USED EEG DATABASE

Patient Seizure Seizure Mean 'seizure
origin type durations(s)

1 temporal CP,SP 13.1

2 frontal GTC,CP,SP 118.2

3 temporal CP,SP 105

4 temporal GTC,CP,SP 87.4

5 frontal GTC,CP,SP 44.9

6 temporal GTC,CP 66.9

7 temporal GTC,CP,SP 153.5

8 temporal CP,SP 163.7

9 frontal GTC,CP 114.7

11 frontal GTC,CP,SP 157.3

12 frontal GTC,CP,SP 55.1

13 temporal GTC,CP,SP 158.3
14 temporal GTC,CP 216.4
15 frontal GTC,CP,SP 145.4

16 temporal GTC,CP,SP 121.0
17 temporal GTC,CP,SP 86.2

18 temporal CP,SP 13.7

19 frontal GTC,CP,SP 12.5

20 temporal GTC,CP,SP 85.7

21 temporal CP,SP 83.1
Total - - 100.1

Note: GTC = generalized tonic-clonic seizure, CP = complex partial

seizures, SP = simple partial seizures,

contains approximately 24 h of nonseizure EEG signals while
patient 12 is an exception, who has about 48 h of interictal
EEG data. All the beginning and the end of seizure events were
notated by epileptologists according to the epileptic patterns
and clinical manifestation.

To address the data imbalance between the seizure and
nonseizure class, data augmentation technique is applied to
the training set to minimize overfitting [52]. For each patient,
we randomly select one or two seizure events and take the
number of normal EEG recordings that are 5 times as seizure
data in the training set. Then data augmentation is performed
on the seizure data in the way that each seizure event is
resampled five-fold. Finally, the amounts of nonseizure and
seizure data are equal in the training set.

The details of used Freiburg database are presented in
Table |. Note that patient 10 is not considered with the reason
of electrode box disconnection. In summary, the training
samples contain 0.82 h seizure recordings and 4.1 h normal
recordings. About 680 h EEG recordings with 55 seizures from
20 patients are employed for the evaluation of the proposed
method.

[1l. METHOD
The architecture of the proposed automatic seizure detection
algorithm is depicted in Fig.1. The whole algorithm can be
divided into three parts: Stockwell transform, bidirectional
LSTM, postprocessing. Each part will be described particu-
larly in the following sections.

A. Stockwell Transform

Due to the EEG’s nonstationarity, time-frequency analy-
sis of EEG signals is helpful for detecting seizures
[53]. Stockwell transform (S-transform) is an ideal time-
frequency decomposition method, which combines the
superiorities of short-time Fourier transform (STFT) and
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Fig. 1. Block diagram of proposed method for seizure detection.
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(4)

The Gaussian window in (4), which is related to fre-
quency f, could provide better frequency resolution at lower
frequencies and better time resolution at higher frequencies.
The S-transform spectrogram is given as:

S)Sd(Ta f) = S((Ta f)st(ra f) (5)

In the current work, EEG recordings are partitioned into 4 s
segments (1024 points) with no overlapping. The S-transform
of each segment returns a 1024 x 128 time-frequency matrix,
where 128 corresponds to the frequency from 1 to 128 Hz, and
1024 stands for time points. Generally, the frequency range of
seizure activity focuses on 3 to 30 Hz. Thus, the frequency
range of the proposed S-transform spectrogram is chosen from
4 to 32 Hz. Besides, to decrease the computation complexity of
our system, the time-frequency matrix is divided into 64 blocks
in time axis and 14 blocks in frequency axis. 896 blocks are
generated by accumulating the power in each block. At last,
a 14 x 64 matrix is obtained after the S-transform in this
study, which will be used as the input of BiLSTM.

Fig 2 and Fig 3 illustrate the difference between normal
and seizure EEG segment randomly selected from patient 9.
Fig 2(a) and Fig 3(a) depict normal and seizure EEG segments.
In Fig 2(b) and Fig 3(b), the y-axis stands for the frequency
ranging from 4 to 32 Hz, and the depth of color indicates the
power at corresponding time-frequency block.
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B. Bidirectional Long Short-Term Memory

The recurrent neural network (RNN) is proven to be an
efficient deep network for solving time-series problems. It has
been successfully implemented in natural language process

Time (s)

Fig. 2. (a) normal EEG signal (b) S-transform of normal EEG.
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Fig. 3. (a) seizure EEG signal (b) S-transform of seizure EEG.

and speech recognition. Through a feedback connection in
RNN, previous information in sequential data can be utilized
by the following state [39]. The main problem existing in the
training process of RNN is gradient vanishing or exploding.
To address those problems, the RNN unit is replaced with a
gated memory cell called long short term memory (LSTM).
With the special controlling gate and memory blocks, LSTM
helps to maintain gradients during back-propagation and
allows the network to remember long term information. Fig.4
depicts the structure of single LSTM cell which includes five
components: the memory cell ¢, the candidate memory ¢,
forget gate f;, input gate i;, and output gate o.
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Fig. 5. Architecture of proposed BILSTM.

Consider a time sequence input X = (X1, X2, X3, ... Xn).
At time t, given input x;, and the hidden state hy_; from
previous time, the procedure of LSTM network can be divided
as follows:

ft = o (Wtn - he—1 + Wiy - X + by) (6)
it = 0 (Win - he—1 + Wix - X¢ + bj) (7
or = 0 (Woh - ht—1 + Wox - Xt + bo) (8)
C{ = tanh(Weh - he—1 + Wex - Xt + be) )
¢ = fi-C—1+it-¢ (10)
ht = o - tanh(ct) (112)

where o (-) is the sigmoid function, W represents weight
matrices, b denotes biases.

Whether the information to be remembered or forgotten is
decided by forget gate f; in (6). Input gate iy calculates the
degree to which the new content is added to the next memory
cell by using (7). o; in (8) is the output gate which determines
the part of the memory content that will be exposed. The
candidate cell is calculated in (9). The new cell ¢ in (10)
is obtained by adding the previous information through the
forget gate and the new information through the input gate.
The LSTM output at time t can be computed by using (11).

In feedforward LSTMs, information flows from forward to
backward. BiLSTM is proposed to exploit information flowing
in two directions. The structure of BiLSTM used in this study
is depicted in Fig.5. The last output of BiLSTM is followed
with a fully connected layer which uses softmax as activation
function to map the inputs into probability values. The sum
of all probabilities is equal to 1. The expression of softmax
function can be defined as:

2
h___ €'
J > S

(12)

For each patient, we trained three models for the three focal
channels respectively. Differential operating is performed to
the softmax layer, and output score of single channel ranges
from -1 to 1.

The whole neural network avoids overfitting by using adap-
tive moment estimation (Adam) as optimizer and L2 regu-
larization. The hyper parameters used in this neural network
are listed as follows: learning rate = 0.001, batch size = 20,
LSTM hidden units = 40, L2 regularization rate = 0.0001,
and training_epochs = 100.

C. Postprocessing

For improving detection performance, postprocessing is
performed to the output scores of BiLSTM, which contains
smoothing, threshold decision, multichannel fusion and collar
operation [54].

To remove random noise and sharp spikes, a moving average
filter is carried out to the output score, which can be defined as:

M

. 1 .
z(i) = oI +1k§M x(i 4+ k)

(13)

where z is the filtered signal, x denotes the output of BiLSTM,,
2M + 1 represents the length of smoothing. In this study,
the smoothing length is between 5 to 15, which is specific
for different patients. The smoothing process is beneficial to
exclude some accidental burrs.

Then the filtered signal is compared with a fixed threshold
Thr to obtain a binary label. Thr is specific for each patient
which is calculated during training procedure. If the value after
smoothing is bigger than Thr, the segment will be labeled
as 1, otherwise as 0. The threshold operation achieves binary
decisions, where 1 denotes seizure segment and 0 represents
nonseizure segment.

Multichannel fusion is employed in the next step to improve
detection accuracy and reduce misjudgment. In the three focal
channels, if a testing segment is detected as seizure at least
in two channels, it will be marked as a seizure segment; if
the segment is detected as seizure in single channel but its
adjacent segment is detected, it will also be labeled as a seizure
segment. Otherwise, it will be declared as a normal segment.

The start and the end of seizure events become more
obscurely due to the smoothing procedure. Hence, a col-
lar operation is deployed to compensate for these missed
parts [55]. In this study, each seizure activity detected by our
approach is extended at either side to prevent the misjudgment
of seizure. The example of postprocessing procedure selected
from patient 17 is illustrated in Fig.6.

IV. RESULTS

All experiments were carried out in Matlab R2018a and
Tensorflow 1.11.0 environment (Python 3.6) running on a core
processor unit with 3.60 GHz. Two evaluation criteria have
been employed for the performance evaluation of the proposed
seizure detection algorithm: the segment-based criterion and
the event-based criterion.

For the segment-based level, three statistical measurements
are introduced by comparing the labels marked by our method
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Fig. 6. The postprocessing procedure of 1h EEG data. (a) 1h origin
EEG recording in channel 1. (b) Decision outputs of BiLSTM classifier in
channel 1. (c) The data in channel 1 after smoothing. (d) The binary value
after threshold in channel 1. (e) The multi-channel fusion results after the
three channel integration. (f) The final decisions after collar technique.
The seizure event marked by experts is between the two vertical lines.

with those judged by neurologists, which can be expressed as:

TP
itivity = ————— x 100% 14
Sensitivity TPrFEN x 100% (14)
Speci ficit N 100% (15)
= — X
P Y= INTFP °
TP+TN

Accuracy = x 100% (16)

TP+FN+TN+FP

Here, TP (true positive) denotes the segments labeled as
seizure by both our method and experienced neurologists. TN
(True Negative) represents the segments marked as normal
by our method and neurologists. FP (False Positive) denotes
the number of detected seizure segment identified by our
system but marked as real normal segment by experts. FN
(False Negative) represents the number of seizure segments
incorrectly labeled by the detection algorithm.

The results of segment-based metrics are presented in
Table Il. On average, the sensitivity of 98.09%,the specificity
of 98.69% and the accuracy of 98.69% are obtained. More-
over, there are 15 patients having the sensitivity of 100%,
while 18 patients’ specificities have exceeded 99%. Due to
the missed detection, the sensitivities of patient 14, 19 are
relatively low, which are 87.10% and 83.33% respectively.

For the event-based level, two measures are applied to assess
the performance of the proposed approach in clinical practice:
event based sensitivity and false detection rate. The event-
based sensitivity is calculated through the number of true
detections dividing by the number of testing seizures for each
patient. False detection rate (FDR) represents the mean times
of false positive events in an hour.

TABLE I
DETECTION RESULTS OF PROPOSED METHOD ON
EPOCH-BASED METRICS

Patient Sensitivity (%) Specificity (%) Accuracy (%)
1 100 98.95 98.95
2 100 99.21 99.22
3 100 99.88 99.88
4 100 99.18 99.18
5 100 92.30 92.30
6 100 98.65 98.65
7 100 98.27 98.28
8 100 98.30 98.30
9 97.96 98.09 98.09
11 100 99.79 99.79
12 100 99.45 99.45
13 100 97.42 97.43
14 87.10 99.48 99.43
15 93.46 98.65 98.75
16 100 98.75 98.75
17 100 99.68 99.68
18 100 98.76 98.76
19 83.33 99.77 99.77

20 100 99.46 99.46

21 100 99.72 99.72

Total 98.09 98.69 98.69
TABLE Il

DETECTION RESULTS OF PROPOSED METHOD ON
EVENT-BASED METRICS

Patic Number of Number of o

nt experts-marked true Sensitivity(%) FDR (/h)
seizures detections

1 2 2 100 0.516
2 2 2 100 0.25
3 3 3 100 0
4 3 3 100 0.09
5 4 4 100 1.01
6 2 2 100 0.13
7 2 2 100 0.53
8 1 1 100 0.25
9 4 4 100 0.375
11 2 2 100 0
12 3 3 100 0.156
13 1 1 100 0.25
14 3 2 66.7 0.03
15 3 3 100 0.21
16 4 4 100 0.37
17 4 4 100 0
18 3 3 100 0.51
19 2 1 50 0.06
20 4 4 100 0
21 3 3 100 0.08

Total 55 53 96.3 0.24

Note: FDR = false detection rate

The results of event-based evaluation are summarized in
Table I11. For event-based evaluation, the mean sensitivity of
96.3% and mean FDR of 0.24/h are achieved. Furthermore, all
patients except patient 14 and 19 have no undetected seizures.
The highest false detection rate occurs at patient 15 owing
to the artifacts which contains spikes and resemble seizure
activities.

V. DISCUSSION
A seizure detection algorithm combining S-transform and
BILSTM is presented in current work. S-transform is per-
formed to intracranial EEG recordings and the time- frequency
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Fig. 8. A missing seizure detection of patient 14. The seizure event
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matrix is obtained. A bidirectional LSTM network is served
as a feature selector and classifier, and postprocessing is used
to improve the accuracy of classification.

Compared with  other time-frequency approaches,
S-transform has proven to be efficient in investigating
the dynamic EEG signals due to its multiresolution analysis
capability and low time complexity. In this study, the output
of S-transform on a 4-s EEG epoch is a 128 x 1024 matrix.
To reduce the complexity of BILSTM network, we select
the frequency band from 4 to 32 Hz, and divide the time
axis into 64 blocks, which significantly reduces the time for
training BILSTM. The number of parameters in BiLSTM is
given as follows:

Nparameters =2 X (4X (ninput X noutput‘i‘]-) X ninput) (7)

The input size of LSTM is chosen as 14, which correspond
to the frequency axis of S-transform matrix. And the output
size denotes the hidden units in each single LSTM block. Too
many parameters in neural networks may cause the problem of
overfitting, whereas few parameters will limit the fitting ability
of the model. Here we use patient 20 to compare the influences
of different parameters, and the comparison is shown in Fig.7.
It is noted that the performance of 14 x 64 S-transform
matrix with 40 hidden units in LSTM block achieves 99.72%
recognition accuracy in patient 20.

Figure 8 depicts a missing seizure detection from patient 14.
The seizure is not obvious compared with the background
activity, which may be the reason of this missing detection.

Table 1V summaries the results of four cases, including
LSTM, BIiLSTM, LSTM with S-transform, and BiLSTM with
S-transform. For LSTM and BIiLSTM without S-transform,

TABLE IV
PERFORMANCE COMPARISON

Method Sensitivity (%) Specificity (%) FDR(/h)
LSTM 77.74 84.37 0.91
BIiLSTM 82.86 89.21 1.10
LSTM — with 93.29 98.93 0.47
S-transform
BILSTM  with 98.08 98.69 0.24
S-transform

TABLE V

DETECTION RESULTS WITHOUT POSTPROCESSING

Patient Sensitivity (%) Specificity (%) Accuracy (%)
1 78.21 98.99 98.98
2 100 99.27 99.27
3 96.7 99.91 99.91
4 94.08 99.23 99.23
5 93.75 93.45 93.45
6 88.5 98.77 98.77
7 100 98.31 98.31
8 100 99.02 99.02
9 96.32 98.54 98.55
11 100 99.79 99.79
12 100 99.65 99.64
13 93.5 97.75 97.75
14 75.4 99.62 99.62
15 81.5 98.92 98.92
16 100 99.01 99.01
17 88.45 99.72 99.72
18 65 99.11 99.11
19 71.5 99.79 99.79

20 98 99.61 99.61
21 97.15 99.84 99.84
Total 91.2 98.91 98.91

the overall sensitivity and specificity are 77.84%, 84.37% and
82.86%, 89.21%, respectively, and for LSTM and BIiLSTM
combined with S-transform, the sensitivity and specificity
are 93.29%, 98.93% and 98.98%, 98.69%, respectively,
which indicates the effectiveness of S-transform for EEG
time-frequency representation. Furthermore, in the compar-
ison of LSTM and BIiLSTM with S-transform, the average
improvement in sensitivity is 4.79%, which demonstrates that
the BiLSTM possesses better capabilities for feature selection
and classification.

In this work, postprocessing is used to improve detection
performance. Table V presents the detection results without
postprocessing, and the mean sensitivity and specificity are
91.2 % and 98.97% respectively. Compared with Table II, it
could be noted that the procedure of postprocessing results
in a notable increase in sensitivity which improves from
91.2% to 98.09%. Meanwhile, there is only a slight decline in
specificity.

To quantify the time cost of our system, we calculated
the running time in the training and testing stage on a Dell
workstation with a 3.6GHz Intel processor running Matlab
R2018a and Tensorflow 1.11.0. For each patient, the average
time taken in training stage and testing stage are about 48 s and
3 s respectively. On the Freiburg EEG database, Li et al. [56]
proposed an improved sparse representation method for seizure
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TABLE VI
COMPARISON OF PERFORMANCES FOR DIFFERENT METHODS PROPOSED IN RECENT YEARS

Method Epoch-based

Total of data (h)

False detection Number of

Year

sensitivity (%) rate (/h) patients used

S-transforr'n' and singular value 96.40 183.07 0.16 20 2015
decomposition [58]

Dictionary pair learning [59] 93.39 530 0.236 20 2018
Cross-bispectrum analysis[60] 95.83 560 0.24 20 2019
DWT with random forests[61] 99.74 28.6 0.21 21 2019
Kernel robgst probabilistic collaborative 97.48 564.38 057 o1 2019
representation [62]

Our proposed method 98.09 689.1 0.24 20 -

detection, which took about 11 s for the training stage and
50 s for 1h EEG testing data. Yuan et al. [57] presented a
kernel collaborative representation method, which consumed
about 15s in training stage and 1min for 1h EEG recordings
in testing stage. In comparison with their methods, the time
complexity in training stage is relatively longer due to the
training of deep neural network, but the time consumed in
testing stage in our algorithm is 3 s for one hour recordings,
which can meet the need of real-time seizure detection.

The Freiburg Epilepsy EEG database has been applied in
several previous studies for evaluation. The comparison results
between our method and other seizure detection methods
are listed in Table VI. Xia et al. [58] developed a seizure
detection system based on S-transform and singular value
decomposition (SVD). The algorithm was tested on 183 h
EEG signals from 20 patients and yielded overall sensitivity
of 96.40% as well as a false detection rate of 0.16/h. Even
though they have obtained a lower FDR compared with our
method, the sensitivity in our algorithm is higher and the
testing set is much bigger than theirs. In the work of Ma and
Yu [59], a novel dictionary pair learning algorithm was built
for seizure detection. Three channels of EEG from 20 patients
with 55 seizures were used for experiment, and they gained a
lower epoch-based sensitivity of 93.39% with a false detection
rate of 0.236/h.

Recently, Mahmoodian et al. [60] used cross bispec-
trum as features and obtained a sensitivity of 95.83%.
Tzimourta et al [61] integrated DWT features with random
forest classifier. They tested their method on 28.6 h data and
attained a high sensitivity of 99.74%. Yu et al. [62] proposed
a collaborative representation method using kernel robust
probabilistic and achieved 97.48% sensitivity on 21 patients.
Compared to those works, our proposed approach shows
competitive performance and yields a sensitivity of 98.09%
with the longest length of EEG data.

VI. CONCLUSION

In this work, an efficient approach based on S-transform
and BiLSTM has been proposed for automatic seizure detec-
tion. EEG segments are time-frequency represented by using
S-transform, and BiLSTM are employed as feature extractor

and classifier. The approach is evaluated on the Freiburg
Epilepsy database and yields a sensitivity of 98.09% and a
specificity of 98.69% on the epoch-based level. Besides, a sen-
sitivity of 96.36% and 0.24/h false detection rate are achieved
under event-based level. The prominent performance suggests
that this method has the potential of clinical application.
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